论文标题

通过特征函数对Relu神经网络的概率验证

Probabilistic Verification of ReLU Neural Networks via Characteristic Functions

论文作者

Pilipovsky, Joshua, Sivaramakrishnan, Vignesh, Oishi, Meeko M. K., Tsiotras, Panagiotis

论文摘要

验证神经网络的投入输出关系以实现一些所需的性能规范是一个困难而重要的问题,这是由于许多工程应用中神经网的无处不在。我们在频域中使用概率理论的想法来为Relu神经网络提供概率验证保证。具体而言,我们将(深)馈电神经网络解释为在有限的地平线上塑造初始状态的分布,并使用特征函数来传播输入数据通过网络的分布。使用逆傅里叶变换,我们获得了输出集的相应累积分布函数,可用于检查网络是否按预期执行,而从输入集中进行了任何随机点。所提出的方法不需要分布即可具有明确的矩或力矩生成功能。我们在两个示例上演示了我们提出的方法,并将其性能与相关方法进行比较。

Verifying the input-output relationships of a neural network so as to achieve some desired performance specification is a difficult, yet important, problem due to the growing ubiquity of neural nets in many engineering applications. We use ideas from probability theory in the frequency domain to provide probabilistic verification guarantees for ReLU neural networks. Specifically, we interpret a (deep) feedforward neural network as a discrete dynamical system over a finite horizon that shapes distributions of initial states, and use characteristic functions to propagate the distribution of the input data through the network. Using the inverse Fourier transform, we obtain the corresponding cumulative distribution function of the output set, which can be used to check if the network is performing as expected given any random point from the input set. The proposed approach does not require distributions to have well-defined moments or moment generating functions. We demonstrate our proposed approach on two examples, and compare its performance to related approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源