论文标题
多层复杂网络中基于节点和边缘中心性的故障
Node and Edge Centrality based Failures in Multi-layer Complex Networks
论文作者
论文摘要
多层复杂网络(MLCN)出现在各种域中,例如运输,供应链等。MLCN中的故障可能导致系统中的重大破坏。几项研究的重点是各种失败,例如级联,避免这种情况的原因和方法。本文考虑了特定类型的MLCN失败,其中下层为高层提供服务,而没有跨层交互,这是计算机网络的典型特征。用相同的节点组构建了三层MLCN,其中每一层具有不同的特征,最底层的是Erdos-Renyi(ER)随机图,在节点中,最短路径跃点数量是高斯,中间层是ER图,与上一层相比具有较高的边缘,而最高的图层是缩放图形的最高尺度图,具有更高的边缘数量。边缘和节点失败均被考虑。失败会随着静态批处理模式的边缘和节点中心的降低以及中心随着渐进式失败而动态变化而发生故障。三个关键参数的紧急模式,即,在研究节点或边缘故障后,所有三层的平均最短路径长度(ASPL),总路径计数(TSPC)和总边数(TNE)。广泛的模拟表明,除一个参数外,所有参数均显示出明确的退化模式。令人惊讶的是,中间层的ASPL开始显示所有类型的失败的混乱行为。
Multi-layer complex networks (MLCN) appears in various domains, such as, transportation, supply chains, etc. Failures in MLCN can lead to major disruptions in systems. Several research have focussed on different kinds of failures, such as, cascades, their reasons and ways to avoid them. This paper considers failures in a specific type of MLCN where the lower layer provides services to the higher layer without cross layer interaction, typical of a computer network. A three layer MLCN is constructed with the same set of nodes where each layer has different characteristics, the bottom most layer is Erdos-Renyi (ER) random graph with shortest path hop count among the nodes as gaussian, the middle layer is ER graph with higher number of edges from the previous, and the top most layer is scale free graph with even higher number of edges. Both edge and node failures are considered. Failures happen with decreasing order of centralities of edges and nodes in static batch mode and when the centralities change dynamically with progressive failures. Emergent pattern of three key parameters, namely, average shortest path length (ASPL), total shortest path count (TSPC) and total number of edges (TNE) for all the three layers after node or edge failures are studied. Extensive simulations show that all but one parameters show definite degrading patterns. Surprising, ASPL for the middle layer starts showing a chaotic behavior beyond a certain point for all types of failures.