论文标题
$ K_0(\ Mathbb P_N)$的异构体组$
The Group of Isometries of $K_0(\mathbb P_n)$
论文作者
论文摘要
我们研究了Grothendieck Group $ k_0(\ Mathbb P_N)$的一组,配备了由$χ(e,f)= \sum_ν(-1)^ν(-1)^v dim dim ext^ven(e,f)$定义的标准Euler形式$χ$。我们证明了该组的几个属性,特别是我们证明它本质上是一个免费的Abelian等级$ [\ frac {n+1} {2} {2}] $。另外,我们以$ n \ leqslant 6 $明确计算其发电机。
We study the group of isometries of the Grothendieck group $K_0(\mathbb P_n)$ equipped with the standard Euler form $χ$ defined by $χ(E, F) = \sum_ν(-1)^ν\dim Ext^ν(E, F)$. We prove several properties of this group, in particular, we show that it is essentially a free abelian group of rank $[\frac{n+1}{2}]$. Also, we compute explicitly its generators for $n\leqslant 6$.