论文标题
在可集成的随机粒子系统中重写历史
Rewriting History in Integrable Stochastic Particle Systems
论文作者
论文摘要
如果我们为每个粒子配备了自己的速度参数,那么许多一个空间维度中的许多可集成的随机粒子系统(例如Tasep-完全不对称的简单排除过程 - $ Q $ - $ $ -TASEP)仍然可以集成。在这项工作中,我们介绍了粒子系统的马尔可夫过渡运算符之间的交织关系,这些关系因速度参数的排列而有所不同。这些关系概括了我们以前的作品(Arxiv:1907.09155,Arxiv:1912.06067),但是在这里,我们采用了一种基于Yang-Baxter方程的新方法,用于较高的自旋随机六个顶点模型。我们的互换者是马尔可夫过渡运营商,这导致了有趣的概率后果。 首先,我们为我们的粒子系统的同质,连续时间版本的马尔可夫过渡半群获得了一个新的松弛型微分方程。我们的LAX方程以统一的方式编码了$ Q $ -TASEP和TASEP的多点可观察到的时间演变,这对于对这些系统的多点可观察到的渐近分析可能很感兴趣。 其次,我们表明我们的相互交织关系导致粒子系统轨迹的概率度量之间的耦合,这些粒子系统的轨迹因速度参数的排列而不同。这种耦合的条件分布已实现为“重写历史记录”随机步行,随机将粒子的轨迹随机地示例在由相邻粒子的轨迹确定的腔室中。作为副产品,我们在积极的实际半线上构建了一个新的耦合,以不同的速率。
Many integrable stochastic particle systems in one space dimension (such as TASEP - Totally Asymmetric Simple Exclusion Process - and its $q$-deformation, the $q$-TASEP) remain integrable if we equip each particle with its own speed parameter. In this work, we present intertwining relations between Markov transition operators of particle systems which differ by a permutation of the speed parameters. These relations generalize our previous works (arXiv:1907.09155, arXiv:1912.06067), but here we employ a novel approach based on the Yang-Baxter equation for the higher spin stochastic six vertex model. Our intertwiners are Markov transition operators, which leads to interesting probabilistic consequences. First, we obtain a new Lax-type differential equation for the Markov transition semigroups of homogeneous, continuous-time versions of our particle systems. Our Lax equation encodes the time evolution of multipoint observables of the $q$-TASEP and TASEP in a unified way, which may be of interest for the asymptotic analysis of multipoint observables of these systems. Second, we show that our intertwining relations lead to couplings between probability measures on trajectories of particle systems which differ by a permutation of the speed parameters. The conditional distribution for such a coupling is realized as a "rewriting history" random walk which randomly resamples the trajectory of a particle in a chamber determined by the trajectories of the neighboring particles. As a byproduct, we construct a new coupling for standard Poisson processes on the positive real half-line with different rates.