论文标题

混合类型的相互正交二元频率平方

Mutually orthogonal binary frequency squares of mixed type

论文作者

Bodkin, Carly, Wanless, Ian M.

论文摘要

\ emph {频率平方}是一个矩阵,其中每行和列是相同多符号的置换。两个频率平方$ f_1 $和$ f_2 $带有符号多的$ m_1 $和$ m_2 $的\ emph {orthoconal},如果通过叠加$ f_1 $和$ f_2 $是$ $ m_1 \ $ m_1 \ times m_2 $获得的多组对。一组MOF是一组频率,每对都是正交的。我们首先将经典结合在一组MOF的基数上概括,以覆盖\ emph {混合类型}的情况,这意味着允许符号多组在集合中的正方形之间变化。 如果仅使用符号0和1。我们说,MOFS的$ \ nathcal {f} $是\ emph {type-maximal},如果不能将其扩展到较大的MOF来通过添加一个符号的符号至少匹配一个$ \ maths $ \ \ \ \ \ \ \ \ \ \ f ima,则频率平方是\ emph {binary}。在Stinson的开创性工作的基础上,最近的几篇论文发现了足以表明一组二元MOF的条件。我们在几个方向上概括了这些论文,发现了暗示类型 - 最大性的新条件。我们的结果涵盖了混合类型的二元频率平方。同样,在以前的论文使用奇偶校验论点的情况下,我们展示了使用模量大于2的论点的优点。

A \emph{frequency square} is a matrix in which each row and column is a permutation of the same multiset of symbols. Two frequency squares $F_1$ and $F_2$ with symbol multisets $M_1$ and $M_2$ are \emph{orthogonal} if the multiset of pairs obtained by superimposing $F_1$ and $F_2$ is $M_1\times M_2$. A set of MOFS is a set of frequency squares in which each pair is orthogonal. We first generalise the classical bound on the cardinality of a set of MOFS to cover the case of \emph{mixed type}, meaning that the symbol multisets are allowed to vary between the squares in the set. A frequency square is \emph{binary} if it only uses the symbols 0 and 1. We say that a set $\mathcal{F}$ of MOFS is \emph{type-maximal} if it cannot be extended to a larger set of MOFS by adding a square whose symbol multiset matches that of at least one square already in $\mathcal{F}$. Building on pioneering work by Stinson, several recent papers have found conditions that are sufficient to show that a set of binary MOFS is type-maximal. We generalise these papers in several directions, finding new conditions that imply type-maximality. Our results cover sets of binary frequency squares of mixed type. Also, where previous papers used parity arguments, we show the merit of arguments that use moduli greater than 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源