论文标题

关于对称矩阵的Kronecker Powers覆盖物的复杂性的注释

Notes on the complexity of coverings for Kronecker powers of symmetric matrices

论文作者

Sergeev, Igor S.

论文摘要

在本说明中,我们研究了一种新的方法,用于构建矩阵Kronecker Powers的有效覆盖物,最近由J. Alman,Y。Guan,A。Padaki[Arxiv,2022]提出。我们为以更强的形式提供了对称矩阵的替代证明。结果,以前已知的上限在boolean $ n \ times n $ kneser-sierpinski矩阵的深度-2添加剂复杂性上提高到$ o(n^{1.251})$。

In the present note, we study a new method of constructing efficient coverings for Kronecker powers of matrices, recently proposed by J. Alman, Y. Guan, A. Padaki [arXiv, 2022]. We provide an alternative proof for the case of symmetric matrices in a stronger form. As a consequence, the previously known upper bound on the depth-2 additive complexity of the boolean $N\times N$ Kneser-Sierpinski matrices is improved to $O(N^{1.251})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源