论文标题
多尺度结构引导扩散的图像脱毛
Multiscale Structure Guided Diffusion for Image Deblurring
论文作者
论文摘要
扩散概率模型(DPM)最近被用于图像去蓝色,该图像是作为图像条件的生成过程配制的,该过程将高斯噪声映射到高质量的图像,以模糊输入为条件。在对成对的内域数据训练时,图像条件的DPM(ICDPM)比基于回归的方法显示出更现实的结果。但是,在带有室外图像时,它们在恢复图像方面的鲁棒性尚不清楚,因为它们不施加特定的降解模型或中间约束。为此,我们引入了一个简单而有效的多尺度结构指导,作为一种隐性偏见,该偏见将ICDPM告知中间层的尖锐图像的粗糙结构。这种指导的配方会导致过度的结果显着改善,尤其是在看不见的领域。该指南是从训练有素的回归网络的潜在空间中提取的,该领域可预测多个较低分辨率的清洁范围目标,从而维持最显着的尖锐结构。借助模糊输入和多尺度指导,ICDPM模型可以更好地理解模糊并恢复干净的图像。我们在不同数据集上评估了一个经过训练的单数据集训练的模型,并在看不见的数据上显示出更少的伪像,展示了更健壮的去蓝色结果。我们的方法表现优于现有基准,达到最新的感知质量,同时保持竞争性失真指标。
Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring, formulated as an image-conditioned generation process that maps Gaussian noise to the high-quality image, conditioned on the blurry input. Image-conditioned DPMs (icDPMs) have shown more realistic results than regression-based methods when trained on pairwise in-domain data. However, their robustness in restoring images is unclear when presented with out-of-domain images as they do not impose specific degradation models or intermediate constraints. To this end, we introduce a simple yet effective multiscale structure guidance as an implicit bias that informs the icDPM about the coarse structure of the sharp image at the intermediate layers. This guided formulation leads to a significant improvement of the deblurring results, particularly on unseen domain. The guidance is extracted from the latent space of a regression network trained to predict the clean-sharp target at multiple lower resolutions, thus maintaining the most salient sharp structures. With both the blurry input and multiscale guidance, the icDPM model can better understand the blur and recover the clean image. We evaluate a single-dataset trained model on diverse datasets and demonstrate more robust deblurring results with fewer artifacts on unseen data. Our method outperforms existing baselines, achieving state-of-the-art perceptual quality while keeping competitive distortion metrics.