论文标题
在物联网网络中大量随机访问的基于梯度的近端展开
Proximal Gradient-Based Unfolding for Massive Random Access in IoT Networks
论文作者
论文摘要
无授予的随机访问是一种有效的技术,可以实现低空和低延迟的大规模访问,其中联合活动检测和渠道估计(JADCE)是一个关键问题。尽管现有的压缩传感算法可以用于JADCE,但它们通常无法同时收集以下属性:有效的稀疏性诱导,快速收敛,对不同的飞行员序列稳健,并适应时间变化的网络。为此,我们基于近端梯度方法为JADCE提出了一个展开的框架。具体而言,我们将Jadce问题提出为群体 - 划线矩阵恢复问题,并利用Minimax凹点惩罚,而不是广泛使用的$ \ ell_1 $ -norm来诱发稀疏性。然后,我们开发一个基于梯度的近端展开神经网络,该网络参数化算法迭代。为了提高收敛速率,我们将动量纳入展开的神经网络,并从理论上证明了加速收敛。基于收敛分析,我们进一步开发了一种自适应调节算法,该算法将其参数调整为不同的信噪比设置。模拟表明,与当前基线相比,所提出的展开神经网络可实现更好的恢复性能,收敛率和适应性。
Grant-free random access is an effective technology for enabling low-overhead and low-latency massive access, where joint activity detection and channel estimation (JADCE) is a critical issue. Although existing compressive sensing algorithms can be applied for JADCE, they usually fail to simultaneously harvest the following properties: effective sparsity inducing, fast convergence, robust to different pilot sequences, and adaptive to time-varying networks. To this end, we propose an unfolding framework for JADCE based on the proximal gradient method. Specifically, we formulate the JADCE problem as a group-row-sparse matrix recovery problem and leverage a minimax concave penalty rather than the widely-used $\ell_1$-norm to induce sparsity. We then develop a proximal gradient-based unfolding neural network that parameterizes the algorithmic iterations. To improve convergence rate, we incorporate momentum into the unfolding neural network, and prove the accelerated convergence theoretically. Based on the convergence analysis, we further develop an adaptive-tuning algorithm, which adjusts its parameters to different signal-to-noise ratio settings. Simulations show that the proposed unfolding neural network achieves better recovery performance, convergence rate, and adaptivity than current baselines.