论文标题

GraphGDP:置换不变图生成的生成扩散过程

GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph Generation

论文作者

Huang, Han, Sun, Leilei, Du, Bowen, Fu, Yanjie, Lv, Weifeng

论文摘要

图生成模型在生物学,化学和社会科学中具有广泛的应用。但是,由于图的离散和高维质以及对基础图分布中的节点订单的排列不变性,建模和理解图的生成过程是具有挑战性的。当前领先的自回旋模型无法捕获图形的置换不变性性质,以依赖生成排序,并且具有较高的时间复杂性。在这里,我们提出了一个连续的时间生成扩散过程,用于置换不变图生成以减轻这些问题。具体而言,我们首先构建了由随机微分方程(SDE)定义的正向扩散过程,该过程将复杂分布中的图形平滑转换为遵循已知边缘概率的随机图。求解相应的反度SDE,可以从新采样的随机图生成图形。为了促进反时SDE,我们新设计了一个位置增强的图形分数网络,从而从扰动图中捕获了不断发展的结构和位置信息,以进行置换。在评估综合指标下,我们提出的生成扩散过程在图形分布学习中实现了竞争性能。实验结果还表明,GraphGDP只能在24个功能评估中生成高质量的图,速度比以前的自回归模型快得多。

Graph generative models have broad applications in biology, chemistry and social science. However, modelling and understanding the generative process of graphs is challenging due to the discrete and high-dimensional nature of graphs, as well as permutation invariance to node orderings in underlying graph distributions. Current leading autoregressive models fail to capture the permutation invariance nature of graphs for the reliance on generation ordering and have high time complexity. Here, we propose a continuous-time generative diffusion process for permutation invariant graph generation to mitigate these issues. Specifically, we first construct a forward diffusion process defined by a stochastic differential equation (SDE), which smoothly converts graphs within the complex distribution to random graphs that follow a known edge probability. Solving the corresponding reverse-time SDE, graphs can be generated from newly sampled random graphs. To facilitate the reverse-time SDE, we newly design a position-enhanced graph score network, capturing the evolving structure and position information from perturbed graphs for permutation equivariant score estimation. Under the evaluation of comprehensive metrics, our proposed generative diffusion process achieves competitive performance in graph distribution learning. Experimental results also show that GraphGDP can generate high-quality graphs in only 24 function evaluations, much faster than previous autoregressive models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源