论文标题

自组织关键系统的重新归一化组分析:内在各向异性与随机环境

Renormalization group analysis of a self-organized critical system: Intrinsic anisotropy vs random environment

论文作者

Antonov, N. V., Kakin, P. I., Lebedev, N. M., Luchin, A. Yu.

论文摘要

我们研究了一个自组织的临界系统,该系统耦合到各向同性随机流体环境。前者用HWA和Kardar引入的强烈各向异性连续(粗粒)模型来描述。莱特牧师。 {\ bf 62} 1813(1989);物理。修订版A {\ bf 45} 7002(1992)];后者由Forster,Nelson和Stephen [Phys。修订版A {\ bf 16} 732(1977)]。两个耦合随机方程的完整问题表示为一个场理论模型,该模型被证明是可骑行的可划定的。在模型参数的四维空间中,相应的重归其化组方程具有固定点的半无限曲线。整个曲线对参数的现实值有吸引力;它的终点对应于原始HWA-KARDAR非线性变得无关紧要的纯粹各向同性状态。在那里,外部环境剩下一个简单的被动标量场。主要的临界维度计算为领先的一环订单($ \ varepsilon = 4-d $扩展中的第一个术语);其中一些在所有订单中似乎都是准确的。它们沿着该曲线保持不变,这使得将其解释为单个普遍性类是合理的。但是,校正指数沿曲线确实有所不同。因此,尚不清楚曲线是否在重新归一化组扩展的所有顺序中存活,或者在考虑高阶校正时缩小到单点。

We study a self-organized critical system coupled to an isotropic random fluid environment. The former is described by a strongly anisotropic continuous (coarse-grained) model introduced by Hwa and Kardar [Phys. Rev. Lett. {\bf 62} 1813 (1989); Phys. Rev. A {\bf 45} 7002 (1992)]; the latter is described by the stirred Navier--Stokes equation due to Forster, Nelson and Stephen [Phys. Rev. A {\bf 16} 732 (1977)]. The full problem of two coupled stochastic equations is represented as a field theoretic model, which is shown to be multiplicatively renormalizable. The corresponding renormalization group equations possess a semi-infinite curve of fixed points in the four-dimensional space of the model parameters. The whole curve is infrared attractive for realistic values of parameters; its endpoint corresponds to the purely isotropic regime where the original Hwa-Kardar nonlinearity becomes irrelevant. There, one is left with a simple advection of a passive scalar field by the external environment. The main critical dimensions are calculated to the leading one-loop order (first terms in the $\varepsilon=4-d$ expansion); some of them are appear to be exact in all orders. They remain the same along that curve, which makes it reasonable to interpret it as a single universality class. However, the correction exponents do vary along the curve. It is therefore not clear whether the curve survives in all orders of the renormalization group expansion or shrinks to a single point when the higher-order corrections are taken into account.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源