论文标题
使用基于传感器的语言模型建立元数据推理
Building Metadata Inference Using a Transducer Based Language Model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Solving the challenges of automatic machine translation of Building Automation System text metadata is a crucial first step in efficiently deploying smart building applications. The vocabulary used to describe building metadata appears small compared to general natural languages, but each term has multiple commonly used abbreviations. Conventional machine learning techniques are inefficient since they need to learn many different forms for the same word, and large amounts of data must be used to train these models. It is also difficult to apply standard techniques such as tokenisation since this commonly results in multiple output tags being associated with a single input token, something traditional sequence labelling models do not allow. Finite State Transducers can model sequence-to-sequence tasks where the input and output sequences are different lengths, and they can be combined with language models to ensure a valid output sequence is generated. We perform a preliminary analysis into the use of transducer-based language models to parse and normalise building point metadata.