论文标题
Kodaira-Spencer零的扭转属性,超过$ \ mathbb {p}^1 $删除4分
A torsion property of the zero of Kodaira-Spencer over $\mathbb{P}^1$ removing four points
论文作者
论文摘要
我们建立了一个扭转定理,以至于效果是,在复杂的投影线上附着在某些准分的复杂投射品种的kodaira-spencer地图的独特零是自然投影下椭圆曲线的扭转点的图像。证明是一个mod $ p $参数,需要密度一组素数。证明中有三种基本要素:解决sun-yang-zuo的猜想的解决方案,构成了论文的主要部分,pink的定理和希格斯的周期性定理。
We establish a torsion theorem to the effect that the unique zero of the Kodaira-Spencer map attached to a certain quasi-semistable family of complex projective varieties over the complex projective line is the image of a torsion point of an elliptic curve under the natural projection. The proof is a mod $p$ argument and requires a density one set of primes. There are three essential ingredients in the proof: a solution to the conjecture of Sun-Yang-Zuo, which constitutes the principal part of the paper, Pink's theorem, and Higgs periodicity theorem.