论文标题

da-cil:朝向域自适应类增压3D对象检测

DA-CIL: Towards Domain Adaptive Class-Incremental 3D Object Detection

论文作者

Zhao, Ziyuan, Xu, Mingxi, Qian, Peisheng, Pahwa, Ramanpreet Singh, Chang, Richard

论文摘要

通过大规模点云数据集的出现,深度学习在3D对象检测中取得了显着的成功。但是,在过去训练的课程中,即灾难性遗忘的严重绩效退化,当班级数量未知或可能有所不同时,仍然是现实世界部署的关键问题。此外,现有的3D类新型检测方法是针对单域情景开发的,在遇到由不同数据集,不同的环境等引起的域移动时,它们在本文中失败,我们确定了未探索但有价值的场景,即在域下的域下的类别范围,并提出了一个新颖的域名,并提出了一个新颖的3D型号,并提出了一个新颖的对象,并提出了一个新颖的对象,并提出了DA DA DA DA DA DA DA DA DA DA DA DA DA DA DA DARECTION ADECTION ADECTION ADECTION ADECTION ADECTION ADECTION a DAIREWERS ADERTICT ADECTION ADECTION a DAIREWERT a DAIRETIC双域复制式增强方法,用于构建多元化训练分布的多个增强域,从而促进渐进域的适应性。然后,探索了多层次的一致性,以促进从不同领域的双教师知识蒸馏,以进行自适应的类别学习。在各种数据集上进行的广泛实验证明了所提出的方法比域自适应类学习方案中基准的有效性。

Deep learning has achieved notable success in 3D object detection with the advent of large-scale point cloud datasets. However, severe performance degradation in the past trained classes, i.e., catastrophic forgetting, still remains a critical issue for real-world deployment when the number of classes is unknown or may vary. Moreover, existing 3D class-incremental detection methods are developed for the single-domain scenario, which fail when encountering domain shift caused by different datasets, varying environments, etc. In this paper, we identify the unexplored yet valuable scenario, i.e., class-incremental learning under domain shift, and propose a novel 3D domain adaptive class-incremental object detection framework, DA-CIL, in which we design a novel dual-domain copy-paste augmentation method to construct multiple augmented domains for diversifying training distributions, thereby facilitating gradual domain adaptation. Then, multi-level consistency is explored to facilitate dual-teacher knowledge distillation from different domains for domain adaptive class-incremental learning. Extensive experiments on various datasets demonstrate the effectiveness of the proposed method over baselines in the domain adaptive class-incremental learning scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源