论文标题

L2SR:通过增强学习学习对加速MRI进行采样和重建

L2SR: Learning to Sample and Reconstruct for Accelerated MRI via Reinforcement Learning

论文作者

Yang, Pu, Dong, Bin

论文摘要

磁共振成像(MRI)是一种广泛使用的医学成像技术,但其较长的收集时间可能是临床环境中的限制因素。为了解决这个问题,研究人员一直在探索减少收购时间的方法,同时保持重建质量。先前的工作集中在寻找具有固定重建器的稀疏采样器或使用固定采样器的重建器。但是,这些方法并不能完全利用采样器和重建者的联合学习潜力。在本文中,我们提出了一个交替的培训框架,以通过深入增强学习(RL)共同学习一对好的采样器和重建者。特别是,我们将MRI抽样的过程视为由采样器控制的采样轨迹,并引入了一种新颖的稀疏奖励,部分观察到了马尔可夫决策过程(POMDP)以制定MRI采样轨迹。与现有作品中使用的密集奖励POMDP相比,提出的稀疏奖励POMDP在计算上更有效,并且具有可证明的优势。此外,所提出的框架称为L2SR(学习采样和重建),克服了使用密度奖励POMDP的先前方法中出现的训练不匹配问题。通过交替更新采样器和重建器,L2SR学习了一对采样器和重建器,以在FastMRI数据集上实现最新的重建性能。代码可在\ url {https://github.com/yangpupku/l2sr-learning-to-sample-sample-------------------------------- reconstruct}中找到。

Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique, but its long acquisition time can be a limiting factor in clinical settings. To address this issue, researchers have been exploring ways to reduce the acquisition time while maintaining the reconstruction quality. Previous works have focused on finding either sparse samplers with a fixed reconstructor or finding reconstructors with a fixed sampler. However, these approaches do not fully utilize the potential of joint learning of samplers and reconstructors. In this paper, we propose an alternating training framework for jointly learning a good pair of samplers and reconstructors via deep reinforcement learning (RL). In particular, we consider the process of MRI sampling as a sampling trajectory controlled by a sampler, and introduce a novel sparse-reward Partially Observed Markov Decision Process (POMDP) to formulate the MRI sampling trajectory. Compared to the dense-reward POMDP used in existing works, the proposed sparse-reward POMDP is more computationally efficient and has a provable advantage. Moreover, the proposed framework, called L2SR (Learning to Sample and Reconstruct), overcomes the training mismatch problem that arises in previous methods that use dense-reward POMDP. By alternately updating samplers and reconstructors, L2SR learns a pair of samplers and reconstructors that achieve state-of-the-art reconstruction performances on the fastMRI dataset. Codes are available at \url{https://github.com/yangpuPKU/L2SR-Learning-to-Sample-and-Reconstruct}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源