论文标题

自然选择的哈勃常数:哈勃张力中的进化芯片

Hubble constant by natural selection: Evolution chips in the Hubble tension

论文作者

Bernardo, Reginald Christian, Lee, You-Ru

论文摘要

近似贝叶斯计算(ABC)算法将生物学中的自然选择视为统计模型选择和参数估计的指导原理。我们采用这种ABC方法来宇宙学,并使用它推断出数据固定在哈勃常数先验的选择上的模型将被数据首选。我们在所有的运行中都发现,普朗克哈勃人常数($ h_0 = 67.4 \ pm 0.5 $ km s $^{ - 1} $ mpc $^{ - 1} $总是由ABC自然出现在SH $ 0 $ ES ESTIMATE上($ H_0 = 73.30 = 73.30 \ pm 1.044 $ km 1.044 $ km 1.044 $ km 1.04.4 $ km 1.04.4 $ km 1.044 $ km km 1.04.4 $ km s $^{ - 1} $ mpc $^{ - 1} $)。结果不管我们如何混合数据集,包括超新星,宇宙天文纪录器,巴里昂声学振荡和生长数据。与传统的MCMC相比,我们发现ABC始终会受到较窄的宇宙学限制,但在相应的MCMC后代内保持一致。

The Approximate Bayesian Computation (ABC) algorithm considers natural selection in biology as a guiding principle for statistical model selection and parameter estimation. We take this ABC approach to cosmology and use it to infer which model anchored on a choice of a Hubble constant prior would be preferred by the data. We find in all of our runs that the Planck Hubble constant ($H_0 = 67.4 \pm 0.5$ km s$^{-1}$Mpc$^{-1}$) always emerge naturally selected by the ABC over the SH$0$ES estimate ($H_0 = 73.30 \pm 1.04$ km s$^{-1}$Mpc$^{-1}$). The result holds regardless of how we mix our data sets, including supernovae, cosmic chronometers, baryon acoustic oscillations, and growth data. Compared with the traditional MCMC, we find that the ABC always results with narrower cosmological constraints, but remain consistent inside the corresponding MCMC posteriors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源