论文标题

用于分析在线客户行为的混合统计计算机学习方法:一项实证研究

A Hybrid Statistical-Machine Learning Approach for Analysing Online Customer Behavior: An Empirical Study

论文作者

Alizamir, Saed, Bandara, Kasun, Eshragh, Ali, Iravani, Foaad

论文摘要

我们将经典的统计方法与最先进的机器学习技术结合使用,以开发一种混合解释模型来分析中国最大的在线零售商(即JD)的特定产品类别的454,897个在线客户行为。尽管大多数机器学习方法在实践中缺乏可解释性困扰,但我们的新型混合方法将通过产生可解释的产出来解决这一实际问题。该分析涉及确定哪些特征和特征对客户的购买行为产生最大的影响,从而使我们能够以很高的准确性来预测未来的销售,并确定最有影响力的变量。我们的结果表明,客户的产品选择对承诺的交付时间不敏感,但是此因素显着影响客户的订单数量。我们还表明,各种折扣方法的有效性取决于特定产品和折扣尺寸。我们确定某些折扣方法更有效的产品类,并提供有关更好地使用不同折扣工具的建议。客户的选择行为跨不同产品类别主要是由客户人口统计的价格和较小程度上的驱动。前者的发现要求在决定何时以及应提供多少折扣时进行护理,而后者则确定了个性化广告和有针对性的营销的机会。此外,为了遏制客户的批处理订购行为并避免不良的斗牛效应,JD应该改善其物流,以确保更快地交付订单。

We apply classical statistical methods in conjunction with the state-of-the-art machine learning techniques to develop a hybrid interpretable model to analyse 454,897 online customers' behavior for a particular product category at the largest online retailer in China, that is JD. While most mere machine learning methods are plagued by the lack of interpretability in practice, our novel hybrid approach will address this practical issue by generating explainable output. This analysis involves identifying what features and characteristics have the most significant impact on customers' purchase behavior, thereby enabling us to predict future sales with a high level of accuracy, and identify the most impactful variables. Our results reveal that customers' product choice is insensitive to the promised delivery time, but this factor significantly impacts customers' order quantity. We also show that the effectiveness of various discounting methods depends on the specific product and the discount size. We identify product classes for which certain discounting approaches are more effective and provide recommendations on better use of different discounting tools. Customers' choice behavior across different product classes is mostly driven by price, and to a lesser extent, by customer demographics. The former finding asks for exercising care in deciding when and how much discount should be offered, whereas the latter identifies opportunities for personalized ads and targeted marketing. Further, to curb customers' batch ordering behavior and avoid the undesirable Bullwhip effect, JD should improve its logistics to ensure faster delivery of orders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源