论文标题

薄膜方程的不变歧管

Invariant Manifolds for the Thin Film Equation

论文作者

Seis, Christian, Winkler, Dominik

论文摘要

研究了$ \ mathbb {r}^n $在$ \ mathbb {r}^n $上具有线性迁移率的薄膜方程解决方案的大型行为:我们研究了在初始数据上某些对称性假设下,朝着自相似的smyth- smyth-hill somyth smyth-hill解决方案的更高级别渐近差异。该分析基于有限维不变的歧管的构造,该歧管近似于任意规定的顺序。

The large-time behavior of solutions to the thin film equation with linear mobility in the complete wetting regime on $\mathbb{R}^N$ is examined: We investigate the higher order asymptotics of solutions converging towards self-similar Smyth--Hill solutions under certain symmetry assumptions on the initial data. The analysis is based on a construction of finite-dimensional invariant manifolds that solutions approximate to an arbitrarily prescribed order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源