论文标题
晶格确定拓扑敏感性斜率$χ^\ prime $ of $ 2d〜 \ mathrm {cp}^{n-1} $ n $ in
Lattice determination of the topological susceptibility slope $χ^\prime$ of $2d~\mathrm{CP}^{N-1}$ models at large $N$
论文作者
论文摘要
我们计算拓扑敏感性斜率$χ^\ prime $,与拓扑充电密度的两点相关器的第二瞬间有关,$ 2D $ $ \ MATHRM {cp}^{N-1} $型号的$ n = 5,11,1,21 $和$ 31 $来自Lattice Monte Carlo Carlo Carlo Simulation。我们的策略包括执行双重限制:首先,我们在物理单元中以固定平滑半径为$χ^\ prime $的连续限制;然后,我们采用零平滑的-dradius限制。由于同样的策略也可以应用于$ 4D $量规的理论和完整的QCD,其中$χ^\ prime $扮演着有趣的理论和现象学角色,因此这项工作构成了朝着此类模型中这种数量的晶格研究迈出的一步。
We compute the topological susceptibility slope $χ^\prime$, related to the second moment of the two-point correlator of the topological charge density, of $2d$ $\mathrm{CP}^{N-1}$ models for $N=5,11,21$ and $31$ from lattice Monte Carlo simulations. Our strategy consists in performing a double limit: first, we take the continuum limit of $χ^\prime$ at fixed smoothing radius in physical units; then, we take the zero-smoothing-radius limit. Since the same strategy can also be applied to $4d$ gauge theories and full QCD, where $χ^\prime$ plays an intriguing theoretical and phenomenological role, this work constitutes a step towards the lattice investigation of this quantity in such models.