论文标题
从恶意软件样品到分形图像:用于分类的新范式。 (2.0版,以前的版本纸质名称:您曾经看过恶意软件吗?)
From Malware Samples to Fractal Images: A New Paradigm for Classification. (Version 2.0, Previous version paper name: Have you ever seen malware?)
论文作者
论文摘要
迄今为止,已经撰写了大量的研究论文,以进行恶意软件的分类,其标识,分为不同的家庭分类以及恶意软件和良好软件之间的区别。这些作品基于捕获的恶意软件样本,并试图使用各种技术(包括人工智能领域的技术)来分析恶意软件和好处。例如,神经网络在这些分类方法中发挥了重要作用。其中一些工作还涉及使用其可视化分析恶意软件。这些作品通常将捕获恶意软件结构的恶意软件样本转换为图像结构,然后是图像处理的对象。在本文中,我们提出了一种基于动态行为分析的非常规和新颖的方法来实现恶意软件可视化的方法,并以视觉上非常有趣的图像被用来对有关良好软件的恶意软件进行分类。我们的方法为将来的讨论开辟了一个广泛的主题,并为恶意软件分析和分类研究提供了许多新的方向,如上所述。提出的实验的结果基于一个6 589 997的数据库,827 853潜在的不需要应用程序和4 174 203个由ESET提供的恶意软件样本和所选的实验数据(图像,生成多项式公式和软件生成图像)可在Github上为有兴趣的人提供。因此,本文不是一项全面的紧凑研究,它报告了从比较实验中获得的结果,而是试图通过恶意软件分析中的应用来显示可视化领域的新方向。
To date, a large number of research papers have been written on the classification of malware, its identification, classification into different families and the distinction between malware and goodware. These works have been based on captured malware samples and have attempted to analyse malware and goodware using various techniques, including techniques from the field of artificial intelligence. For example, neural networks have played a significant role in these classification methods. Some of this work also deals with analysing malware using its visualisation. These works usually convert malware samples capturing the structure of malware into image structures, which are then the object of image processing. In this paper, we propose a very unconventional and novel approach to malware visualisation based on dynamic behaviour analysis, with the idea that the images, which are visually very interesting, are then used to classify malware concerning goodware. Our approach opens an extensive topic for future discussion and provides many new directions for research in malware analysis and classification, as discussed in conclusion. The results of the presented experiments are based on a database of 6 589 997 goodware, 827 853 potentially unwanted applications and 4 174 203 malware samples provided by ESET and selected experimental data (images, generating polynomial formulas and software generating images) are available on GitHub for interested readers. Thus, this paper is not a comprehensive compact study that reports the results obtained from comparative experiments but rather attempts to show a new direction in the field of visualisation with possible applications in malware analysis.