论文标题
多群集波动的两射线褪色模型
The Multi-cluster Fluctuating Two-Ray Fading Model
论文作者
论文摘要
我们引入了一类新的褪色通道,该通道是两个具有随机相位的波动镜面组件的叠加,以及散射波的聚类:多簇波动的两射线(MFTR)褪色通道。 MFTR模型是通过更通用但同样数学上可拖延的模型来形成波动的两射线(FTR)和$κ$ - $ $ $ $ $ $ $ $ $的自然概括。这种概括使纯粹基于射线的FTR模型中存在其他多径簇,并深入讨论了新的潜在褪色通道模型的便利性。然后,我们在封闭形式中得出了MFTR模型(例如概率密度函数(PDF),累积密度函数(CDF)和力矩生成函数)的所有主要概率函数,具有{类似于与现状的模型中的其他淡化模型的数学复杂性”。我们还为PDF和CDF提供了两种其他分析公式:(i)从$κ$ - $ $ $ $ $ $的分布的连续混合物方面,以及(ii)作为伽马分布的无限离散混合物。这种表达式可以通过直接利用$κ$ -UM-$ $ $ SHADEW或NAKAGAMI-M $ M $ CASE的直接可用结果来进行MFTR淡出的性能分析。经典的基准测量指标(例如,以精确和渐近形式)以及褪色的量(包括中断的概率),诸如中断概率(如中断概率)以及褪色的量,进行了MFTR褪色的无线通信系统的性能。
We introduce a new class of fading channels, built as the superposition of two fluctuating specular components with random phases, plus a clustering of scattered waves: the Multi-cluster Fluctuating Two-Ray (MFTR) fading channel. The MFTR model emerges as a natural generalization of both the fluctuating two-ray (FTR) and the $κ$-$μ$ shadowed fading models through a more general yet equally mathematically tractable model. This generalization enables the presence of additional multipath clusters in the purely ray-based FTR model, and the convenience of the new underlying fading channel model is discussed in depth. Then, we derive all the chief probability functions of the MFTR model (e.g., probability density function (PDF), cumulative density function (CDF), and moment generation function) in closed-form, having {a mathematical complexity similar to} other fading models in the state-of-the-art. We also provide two additional analytical formulations for the PDF and the CDF: (i) in terms of a continuous mixture of $κ$-$μ$ shadowed distributions, and (ii) as an infinite discrete mixture of Gamma distributions. Such expressions enable to conduct performance analysis under MFTR fading by directly leveraging readily available results for the $κ$-$μ$ shadowed or Nakagami-$m$ cases, respectively. The performance of wireless communications systems undergoing MFTR fading is exemplified in terms of a classical benchmarking metric like the outage probability, both in exact and asymptotic forms, and the amount of fading.