论文标题
Chern-Simons-Marts Theories中的线运算符和三个维度II-驾驶分析和全环重新召集
Line operators in Chern-Simons-Matter theories and Bosonization in Three Dimensions II -Perturbative Analysis and All-loop Resummation
论文作者
论文摘要
我们研究了基恩·苏尼斯(Chern-Simons)理论中的中间线运算符,并在基本代表中研究了骨气或费米斯物质。在本文中,我们使用所有大型$ n $扰动理论的所有环重新调整这些操作员的分类和属性。我们表明,这些理论在基本代表中具有两个共形线经营者。一个是稳定的重新归一化组固定点,而另一个是不稳定的。他们满足一阶手性进化方程,其中两个介子线算子的分解产物给出了路径的平滑变化。线路可以结束的边界运算符通过其保形尺寸和横向旋转进行分类,我们在有限的't Hooft耦合下明确计算它们。我们与骨髓和费米斯理论中的操作员相匹配。
We study mesonic line operators in Chern-Simons theories with bosonic or fermionic matter in the fundamental representation. In this paper, we elaborate on the classification and properties of these operators using all loop resummation of large $N$ perturbation theory. We show that these theories possess two conformal line operators in the fundamental representation. One is a stable renormalization group fixed point, while the other is unstable. They satisfy first-order chiral evolution equations, in which a smooth variation of the path is given by a factorized product of two mesonic line operators. The boundary operators on which the lines can end are classified by their conformal dimension and transverse spin, which we compute explicitly at finite 't Hooft coupling. We match the operators in the bosonic and fermionic theories.