论文标题
深层量子神经网络,配备了超导处理器上的反向传播
Deep quantum neural networks equipped with backpropagation on a superconducting processor
论文作者
论文摘要
近年来,深度学习和量子计算取得了巨大的进步。这两个快速增长的领域之间的相互作用导致了量子机学习的新研究边界。在这项工作中,我们报告了通过六量可编程超导处理器的反向传播算法训练深量子神经网络的第一个实验证明。特别是,我们表明,可以有效地训练三层深量子神经网络,以学习平均忠诚度高达96.0%的两个Qubit量子通道,并且与理论值相比,精度高达93.3%的分子氢的基态能量。此外,可以以类似的方式对六层深度量子神经网络进行训练,以实现学习单量量子通道的平均忠诚度高达94.8%。我们的实验结果明确展示了深度量子神经网络的优势,包括倒数算法的量子类似物以及对其构成物理量子的量化量不太严格的相干时间要求,从而为近期和将来的量子量子设备提供了量子机器学习应用的宝贵指南。
Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In this work, we report the first experimental demonstration of training deep quantum neural networks via the backpropagation algorithm with a six-qubit programmable superconducting processor. In particular, we show that three-layer deep quantum neural networks can be trained efficiently to learn two-qubit quantum channels with a mean fidelity up to 96.0% and the ground state energy of molecular hydrogen with an accuracy up to 93.3% compared to the theoretical value. In addition, six-layer deep quantum neural networks can be trained in a similar fashion to achieve a mean fidelity up to 94.8% for learning single-qubit quantum channels. Our experimental results explicitly showcase the advantages of deep quantum neural networks, including quantum analogue of the backpropagation algorithm and less stringent coherence-time requirement for their constituting physical qubits, thus providing a valuable guide for quantum machine learning applications with both near-term and future quantum devices.