论文标题
洛伦兹自由BV理论的量化:分解代数与代数量子场理论
Quantization of Lorentzian free BV theories: factorization algebra vs algebraic quantum field theory
论文作者
论文摘要
我们构建和比较了两个替代量化,作为时间定的预脱位代数,以及在Cochain复合物中有价值的代数量子场理论,是$ M $ diblemensional coblesymentical cophiational cochain complecters in Cochain Complectes中的自然集合。我们的比较被认为是时间订购预性代数的明确同构。我们方法的关键要素是与自由BV理论相关的智障和高级Green的同型,该理论将智障和高级绿色的操作员推广到线性差异操作员的Cochain Complexs。
We construct and compare two alternative quantizations, as a time-orderable prefactorization algebra and as an algebraic quantum field theory valued in cochain complexes, of a natural collection of free BV theories on the category of $m$-dimensional globally hyperbolic Lorentzian manifolds. Our comparison is realized as an explicit isomorphism of time-orderable prefactorization algebras. The key ingredients of our approach are the retarded and advanced Green's homotopies associated with free BV theories, which generalize retarded and advanced Green's operators to cochain complexes of linear differential operators.