论文标题

Berry-Esseen类型的估计值,具有稀疏依赖图的随机变量

Berry-Esseen-type estimates for random variables with a sparse dependency graph

论文作者

Janisch, Maximilian, Lehéricy, Thomas

论文摘要

我们使用依赖变换方法在(2,\ infty] $中的顺序$δ\ $Δ\均均匀边界的随机变量的总和中获得浆果 - 类型的界限。我们的界限可改善依赖性图形的跨度依赖性的依赖性,我们的界限是在我们的跨度范围内获得的,我们获得了跨度的依据,我们获得了跨度的依据。以$ l^δ$限制(2,\ infty] $的某些$δ\。

We obtain Berry-Esseen-type bounds for the sum of random variables with a dependency graph and uniformly bounded moments of order $δ\in (2,\infty]$ using a Fourier transform approach. Our bounds improve the state-of-the-art in the regime where the degree of the dependency graph is large. As a Corollary of our results, we obtain a Central Limit Theorem for random variables with a sparse dependency graph that are uniformly bounded in $L^δ$ for some $δ\in(2,\infty]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源