论文标题
巨大的栅极可调式平面状态和2D磁绝缘子中带隙的巨大闸门可重新归一化
Giant gate-tunable renormalization of spin-correlated flat-band states and bandgap in a 2D magnetic insulator
论文作者
论文摘要
二维Van der Waal(VDW)磁体中的新兴量子现象在很大程度上受交换和库仑相互作用之间的相互作用的控制。在这种密切相关的材料中调整库仑相互作用的能力可以精确控制自旋相关的平流状态,带隙(例如)和非常规的磁性,所有这些都对下一代的自旋三旋转和宏伟的应用至关重要。在这里,我们演示了磁性镀铬液和带磁体三纤维瘤(CRBR3)单层在石墨烯上生长的磁性镀铬状态和带隙的巨大栅极可调重新归如此。我们依赖门的扫描隧穿光谱(STS)研究表明,CRBR3的Flat频段间距和带隙可以通过120 MeV和240 MeV连续调节,并通过将载体注入载体中的静电CRBR3/Graphene系统中的静电注入载体,等于CR On CROMOME COLOMP COLOMP COLOMP COLOMBINE COLOMBINE COLOMBINE COLOMBINE COLOMP COLOMP ENTICE。这可以归因于注射到CRBR3中的栅极诱导的载体引起的CRBR3的自我筛查,该载体与石墨烯基板的远程筛选相反的趋势占主导地位。通过静电调制库仑相互作用的静电调制不仅提供了优化旋转传输通道的新策略,而且还可能对交换能量和自旋波间隙产生至关重要的影响,从而可以对磁极差异产生至关重要的影响,从而通过静电调制来精确调整自旋相关的平流状态和2D磁铁中的带隙。
Emergent quantum phenomena in two-dimensional van der Waal (vdW) magnets are largely governed by the interplay between the exchange and Coulomb interactions. The ability to tune the Coulomb interaction in such strongly correlated materials enables the precise control of spin-correlated flat-band states, bandgap (Eg) and unconventional magnetism, all of which are crucial for next-generation spintronics and magnonics applications. Here, we demonstrate a giant gate-tunable renormalization of spin-correlated flat-band states and bandgap in magnetic chromium tribromide (CrBr3) monolayers grown on graphene. Our gate-dependent scanning tunneling spectroscopy (STS) studies reveal that the inter-flat-band spacing and bandgap of CrBr3 can be continuously tuned by 120 meV and 240 meV respectively via electrostatic injection of carriers into the hybrid CrBr3/graphene system, equivalent to the modulation of the Cr on-site Coulomb repulsion energy by 500 meV. This can be attributed to the self-screening of CrBr3 arising from the gate-induced carriers injected into CrBr3, which dominates over the opposite trend from the remote screening of the graphene substrate. Precise tuning of the spin-correlated flat-band states and bandgap in 2D magnets via electrostatic modulation of Coulomb interactions not only provides new strategies for optimizing the spin transport channels but also may exert a crucial influence on the exchange energy and spin-wave gap, which could raise the critical temperature for magnetic order.