论文标题
确定外部测量的分数$ p $ laplace方程的系数
Determining coefficients for a fractional $p$-Laplace equation from exterior measurements
论文作者
论文摘要
我们考虑了确定外部域中的分数$ p \,$ laplace方程的系数的逆问题。假设在外部结构域中具有适当的局部规律性,我们在进行外部测量的区域中提供了明确的重建公式。然后,该公式用于建立真实分析系数的全局唯一性结果。此外,我们还得出了对外部测量集中系数的唯一确定的稳定性估计。
We consider an inverse problem of determining the coefficients of a fractional $p\,$-Laplace equation in the exterior domain. Assuming suitable local regularity of the coefficients in the exterior domain, we offer an explicit reconstruction formula in the region where the exterior measurements are performed. This formula is then used to establish a global uniqueness result for real-analytic coefficents. In addition, we also derive a stability estimate for the unique determination of the coefficients in the exterior measurement set.