论文标题
在混合孵育的流行病模型上,在COVID-19爆发中应用的假设检验
Hypothesis test on a mixture forward-incubation-time epidemic model with application to COVID-19 outbreak
论文作者
论文摘要
2019年出现的新型冠状病毒疾病的孵育期的分布对理解这种疾病和设计有效的疾病控制措施具有至关重要的临床意义。秦等人。 (2020年)设计了一项横截面和前进的后续研究,以收集许多个体的特定观察时间与199个症状的发作之间的持续时间。他们进一步提出了一个混合孵育时间模型,该模型是孵育周期分布和正向时间分布的混合物,以对收集的持续时间进行建模并估算Covid-19的孵育 - 周期分布。在本文中,当孵育周期遵循两参数分布时,我们为混合物向前孵育时间流行模型中未知参数的可识别性提供了足够的条件。在同一设置下,我们提出了一个可能性比率检验(LRT),以测试混合物正向孵育时间流行模型是一个均匀的指数分布。测试问题是非规则的,因为滋扰参数仅在替代方面存在。我们建立了LRT的限制分布,并确定其明确表示。还获得了LRT在一系列局部替代方案下的限制分布。我们的仿真结果表明,LRT具有理想的I型错误和权力,我们分析了来自中国的Covid-19爆发数据集,以说明LRT的实用性。
The distribution of the incubation period of the novel coronavirus disease that emerged in 2019 (COVID-19) has crucial clinical implications for understanding this disease and devising effective disease-control measures. Qin et al. (2020) designed a cross-sectional and forward follow-up study to collect the duration times between a specific observation time and the onset of COVID-19 symptoms for a number of individuals. They further proposed a mixture forward-incubation-time epidemic model, which is a mixture of an incubation-period distribution and a forward time distribution, to model the collected duration times and to estimate the incubation-period distribution of COVID-19. In this paper, we provide sufficient conditions for the identifiability of the unknown parameters in the mixture forward-incubation-time epidemic model when the incubation period follows a two-parameter distribution. Under the same setup, we propose a likelihood ratio test (LRT) for testing the null hypothesis that the mixture forward-incubation-time epidemic model is a homogeneous exponential distribution. The testing problem is non-regular because a nuisance parameter is present only under the alternative. We establish the limiting distribution of the LRT and identify an explicit representation for it. The limiting distribution of the LRT under a sequence of local alternatives is also obtained. Our simulation results indicate that the LRT has desirable type I errors and powers, and we analyze a COVID-19 outbreak dataset from China to illustrate the usefulness of the LRT.