论文标题

多物质拓扑优化的统一材料插值

An unified material interpolation for topology optimization of multi-materials

论文作者

Yi, Bing, Yoon, Gil Ho, Zheng, Ran, Liu, Long, Li, Daping, Peng, Xiang

论文摘要

拓扑优化是寻找高效设计的工程工具之一。对于材料插值方案,通常使用SIMP(具有惩罚性的固体各向同性材料)或基于均质化的插值函数,以相对于分配给每个有限元的设计变量,用于材料特性的参数化。为了使用单材料设计(即固体或空隙)进行拓扑优化,使用多项式函数使用1的参数化和Void的参数化相对直截了当。对于多种材料的情况,每种材料的平等建模和\ textColor {red} {{拓扑优化的每个元素的清晰0,1的结果}问题变得严重,因为维度的诅咒,每个元素的清晰0,1的结果都变得严重。为了缓解这些问题,本研究提出了一个新的基于映射的插值功能,以进行多种物质拓扑优化。与基于多项式的插值不同,这种新的插值是由设计变量的$ p $ norm与设计变量的1纳米的比率乘以设计变量为特定材料的。使用此替代映射的插值函数,每种材料都同样建模,\ textColor {red} {{clear of the多材料拓扑优化模型的清晰0,1结果}可以改进。本文解决了几个拓扑优化问题,以证明当前插值函数的有效性。

Topology optimization is one of the engineering tools for finding efficient design. For the material interpolation scheme, it is usual to employ the SIMP (Solid Isotropic Material with Penalization) or the homogenization based interpolation function for the parameterization of the material properties with respect to the design variables assigned to each finite element. For topology optimization with single material design, i.e., solid or void, the parameterization with 1 for solid and 0 for void becomes relatively straight forward using a polynomial function. For the case of multiple materials, some issues of the equality modeling of each material and \textcolor{red}{the clear 0, 1 result of each element for the topology optimization} issues become serious because of the curse of the dimension. To relieve these issues, this research proposes a new mapping based interpolation function for multi-material topology optimization. Unlike the polynomial based interpolation, this new interpolation is formulated by the ratio of the $p$-norm of the design variables to the 1-norm of the design variable multiplied by the design variable for a specific material. With this alternative mapping based interpolation function, each material are equally modeled and \textcolor{red}{ the clear 0, 1 result of each material for the multi-material topology optimization model} can be improved. This paper solves several topology optimization problems to prove the validity of the present interpolation function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源