论文标题
用于散射实验的计算反向工程分析,用于确定外形和结构因子('p(q)和s(q)折痕')
Computational Reverse-Engineering Analysis for Scattering Experiments for Form Factor and Structure Factor Determination ('P(q) and S(q) CREASE')
论文作者
论文摘要
在本文中,我们提出了一种开源机器学习(ML)加速计算方法,用于分析小角度散射曲线[i(q)与Q],从集中的大分子溶液中以同时获得形式p(q)(q)(例如,胶束)和结构因子s(q)(例如,分析米米尔斯)的表单p(q)(q)。该方法建立在我们最近在计算逆工程分析上进行散射实验(折痕)的工作,该研究已应用于稀稀分子溶液(其中s(q)〜1)或从集中粒子溶液中获得p(q)时,当P(q)已知时(例如,q)(例如,q)(例如,球体形式)。本文的新开发的折痕计算出P(Q)和S(Q),称为“ P(Q)和S(Q)折痕”,通过将已知polyDisperse Core(a)-shell(a)-shell(b)胶束中的溶液中的solicpers core(q)与q的硅结构中的输入i(q)与q进行验证。我们演示了“ p(q)和s(q)折痕”,如果给出了两个或三个相关的散射曲线 - iTotal(q),ia(q)和ib(q) - 作为输入;该演示旨在指导可能选择进行小角度X射线散射(用于胶束的总散射)和/或小角度中子散射,并具有适当的对比度匹配以仅从一个或另一个成分(A或B)散射。在计算机结构中验证了“ P(Q)和S(Q)折痕”后,我们提出了结果,分析了来自核壳型表面活性剂涂层纳米颗粒的溶液中的小角度中子散射曲线,其聚集量很大。
In this paper we present an open-source machine learning (ML) accelerated computational method to analyze small-angle scattering profiles [I(q) vs. q] from concentrated macromolecular solutions to simultaneously obtain the form factor P(q) (e.g., dimensions of a micelle) and structure factor S(q) (e.g., spatial arrangement of the micelles) without relying on analytical models. This method builds on our recent work on Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) that has either been applied to obtain P(q) from dilute macromolecular solutions (where S(q) ~1) or to obtain S(q) from concentrated particle solution when the P(q) is known (e.g., sphere form factor). This paper's newly developed CREASE that calculates P(q) and S(q), termed as 'P(q) and S(q) CREASE' is validated by taking as input I(q) vs. q from in silico structures of known polydisperse core(A)-shell(B) micelles in solutions at varying concentrations and micelle-micelle aggregation. We demonstrate how 'P(q) and S(q) CREASE' performs if given two or three of the relevant scattering profiles - Itotal(q), IA(q), and IB(q) - as inputs; this demonstration is meant to guide experimentalists who may choose to do small-angle X-ray scattering (for total scattering from the micelles) and/or small-angle neutron scattering with appropriate contrast matching to get scattering solely from one or the other component (A or B). After validation of 'P(q) and S(q) CREASE' on in silico structures, we present our results analyzing small-angle neutron scattering profiles from a solution of core-shell type surfactant coated nanoparticles with varying extents of aggregation.