论文标题
库拜绿色公式的平坦带中的电导率
Conductivity in flat bands from the Kubo-Greenwood formula
论文作者
论文摘要
多播系统中的电导率可以分为内部和带间贡献,后者进一步分为对称和反对称部件。在平坦的频带中,标准的电导率消失,与浆果曲率成正比的反对称侧带贡献对应于异常的霍尔效应。我们研究了与量子度量相关的对称频带间电导率是否可以在零频率和平板限制下是有限的。从具有有限的散射速率$η$的Kubo-Greenwood公式开始,我们表明DC电导率在固定限制时在平坦的频段中为零($η\ rightarrow 0 $)。如果使用通常使用涉及费米分布的导数的近似值,则在零温度$ t = 0 $处出现有限的电导率,但是我们证明这是由于(部分平坦带中的费米表面)所致。然后,我们使用Kubo-Streda公式分析直流电导率,并在$ t = 0 $时注意类似的问题。在低温下,库比绿木公式的预测(无近似值)和库博 - 斯特雷达公式的预测显着差异。我们说明了Su-Schrieffer-Heeger模型中的结果,其中人们期望随着单位细胞断开连接而在二聚限制中消失的DC电导率。我们讨论了结果对先前工作的含义,该工作提出了有限的平移直流电导率与量子指标成正比的可能性。我们的结果还强调,在平坦带环境中应用已建立的传输和线性响应方法时,应注意注意,因为其中许多利用了费米表面的存在,并且与动能相比,散射是弱的。
Conductivity in a multiband system can be divided into intra- and interband contributions, and the latter further into symmetric and antisymmetric parts. In a flat band, intraband conductivity vanishes and the antisymmetric interband contribution, proportional to the Berry curvature, corresponds to the anomalous Hall effect. We investigate whether the symmetric interband conductivity, related to the quantum metric, can be finite in the zero frequency and flat band limit. Starting from the Kubo-Greenwood formula with a finite scattering rate $η$, we show that the DC conductivity is zero in a flat band when taking the clean limit ($η\rightarrow 0$). If commonly used approximations involving derivatives of the Fermi distribution are used, finite conductivity appears at zero temperature $T=0$, we show however that this is an artifact due to the lack of Fermi surfaces in a (partially) flat band. We then analyze the DC conductivity using the Kubo-Streda formula, and note similar problems at $T=0$. The predictions of the Kubo-Greenwood formula (without the approximation) and the Kubo-Streda formula differ significantly at low temperatures. We illustrate the results within the Su-Schrieffer-Heeger model where one expects vanishing DC conductivity in the dimerized limit as the unit cells are disconnected. We discuss the implications of our results to previous work which has proposed the possibility of finite flat-band DC conductivity proportional to the quantum metric. Our results also highlight that care should be taken when applying established transport and linear response approaches in the flat band context, since many of them utilize the existence of a Fermi surface and assume scattering to be weak compared to kinetic energy.