论文标题
搜索$ a_0(980)$ - 梅森parton分销功能
Searching for $a_0(980)$-meson parton distribution function
论文作者
论文摘要
在本文中,我们通过使用轻锥谐波振荡器模型(LCHO)来计算标量$ A_0(980)$ - 梅森领先波函数。其中模型参数是通过拟合$ξ$ -Moments $ \langleξ_{a_0}^n \rangle_ζ$的$ \ langleTe_ {a_0}^n \rangle_ζ$来确定的。然后,给出了$ a_0(980)$ - 梅森领先的轻锥分布振幅,带有三个不同的尺度$ζ=(1.0、2.0、5.2)〜{\ rm gev} $。在构建了$ a_0(980)$ - 梅森领先的parton分布功能/价夸克分布功能及其LCHO波函数之间的关系之后,我们展示了$ q^{a_0}(x,ζ)$和$ x q^{a_0}(a_0}(x,x,x,ζ)$。此外,我们还计算了$ a_0(980)$ - Meson的Valence Quark分布功能$ \ langle x^n q^{a_0} \rangle_ζ$,$ n =(1,2,3)$,即$ \ langle x^2 q^{a_0} \ rangle_ {ζ_5} = 0.017 $和$ \ langle x^3 q^{a_0} \ rangle_ {ζ_5} = 0.012 $。最后,显示了梅林矩的比例$ x^n_ {a_0}(ζ,ζ_K)$的比例。
In this paper, we calculate the scalar $a_0(980)$-meson leading-twist wavefunction by using light-cone harmonic oscillator model (LCHO). In which the model parameters are determined by fitting the $ξ$-moments $\langleξ_{a_0}^n\rangle_ζ$ of its light-cone distribution amplitudes. Then, the $a_0(980)$-meson leading-twist light-cone distribution amplitudes with three different scales $ζ= (1.0, 2.0, 5.2)~{\rm GeV}$ are given. After constructing the relationship between $a_0(980)$-meson leading-twist parton distribution functions/valence quark distribution function and its LCHO wavefunction, we exhibit the $q^{a_0}(x,ζ)$ and $x q^{a_0}(x,ζ)$ with different scales. Furthermore, we also calculate the Mellin moments of the $a_0(980)$-meson's valence quark distribution function $\langle x^n q^{a_0}\rangle_ζ$ with $n = (1,2,3)$, i.e. $\langle x q^{a_0}\rangle_{ζ_5} = 0.026$, $\langle x^2 q^{a_0}\rangle_{ζ_5} = 0.017$ and $\langle x^3 q^{a_0}\rangle_{ζ_5} = 0.012$. Finally, the scale evolution for the ratio of the Mellin moments $x^n_{a_0}(ζ,ζ_k)$ are presented.