论文标题
结合计划,推理和强化学习来解决工业机器人任务
Combining Planning, Reasoning and Reinforcement Learning to solve Industrial Robot Tasks
论文作者
论文摘要
当今工业机器人系统的目标之一是允许快速简便地为新任务提供。使用计划和知识表示的基于技能的系统长期以来一直是对此的可能答案。但是,特别是使用需要仔细参数设置的接触良好的机器人任务,如果所需的知识未充分建模,这种推理技术可能会缺乏。我们展示了一种方法,该方法提供了任务级计划和推理以及针对手头任务的技能参数的有针对性学习的组合。从PDDL中提出的任务目标开始,确定了计划中的可学习参数,并且操作员可以为学习过程选择奖励功能和参数。与知识框架的紧密整合可以使学习的先验和多目标贝叶斯优化的使用宽松,以平衡通常会互相影响的安全性和任务绩效等方面。我们通过学习两个不同的接触式任务的技能参数来证明我们的方法的功效和多功能性,并在真正的7-DOF KUKA-IIWA上显示了他们的成功执行。
One of today's goals for industrial robot systems is to allow fast and easy provisioning for new tasks. Skill-based systems that use planning and knowledge representation have long been one possible answer to this. However, especially with contact-rich robot tasks that need careful parameter settings, such reasoning techniques can fall short if the required knowledge not adequately modeled. We show an approach that provides a combination of task-level planning and reasoning with targeted learning of skill parameters for a task at hand. Starting from a task goal formulated in PDDL, the learnable parameters in the plan are identified and an operator can choose reward functions and parameters for the learning process. A tight integration with a knowledge framework allows to form a prior for learning and the usage of multi-objective Bayesian optimization eases to balance aspects such as safety and task performance that can often affect each other. We demonstrate the efficacy and versatility of our approach by learning skill parameters for two different contact-rich tasks and show their successful execution on a real 7-DOF KUKA-iiwa.