论文标题

用单个量子点自旋控制光子极化

Controlling photon polarisation with a single quantum dot spin

论文作者

Mehdi, Elham, Gundin-Martinez, Manuel, Millet, Clément, Somaschi, Niccolo, Lemaître, Aristide, Sagnes, Isabelle, Gratiet, Luc Le, Fioretto, Dario, Belabas, Nadia, Krebs, Olivier, Senellart, Pascale, Lanco, Loïc

论文摘要

在光学量子计算和通信的框架内,一个主要目标包括建立接收节点,这些节点使用与单个固定量子的相互作用,在传入光子上实施条件操作。特别是,对可扩展节点的追求激发了用固态发射器的腔体增强旋转光子界面的发展。然而,一个重要的挑战仍然是以确定性的方式产生稳定,可控制的旋转依赖性光子状态。在这里,我们使用一个基于支柱的高Q腔,嵌入单个载体的半导体量子点,以证明单个电子自旋诱导的巨大极化旋转的控制。完整的断层扫描方法用于推断出由单个旋转状态调节的输出极化stokes矢量。我们在实验中证明了旋转振幅,例如$ \ pm \fracπ{2} $和poincaré球的$π$,这是基于自旋极化映射和自旋介导的光子光子孔的应用所需的。与我们的建模一致,我们观察到环境噪声不会限制自旋诱导的旋转的幅度,而是稍微降低了输出态的极化纯度。我们发现,由于中度的空腔双向发生和有限的噪声,可以通过受控的自旋诱导的旋转来操纵反射光子的极化状态。该控件允许在各种配置(包括零或低磁场)中运行自旋 - 光子接口,从而确保与光子群集状态生成的关键协议兼容。

In the framework of optical quantum computing and communications, a major objective consists in building receiving nodes that implement conditional operations on incoming photons, using the interaction with a single stationary qubit. In particular, the quest for scalable nodes motivated the development of cavity-enhanced spin-photon interfaces with solid-state emitters. An important challenge remains, however, to produce a stable, controllable, spin-dependant photon state, in a deterministic way. Here we use a pillar-based high-Q cavity, embedding a singly-charged semiconductor quantum dot, to demonstrate the control of giant polarisation rotations induced by a single electron spin. A complete tomography approach is used to deduce the output polarisation Stokes vector, conditioned by a single spin state. We experimentally demonstrate rotation amplitudes such as $\pm \fracπ{2}$ and $π$ in the Poincaré sphere, as required for applications based on spin-polarisation mapping and spin-mediated photon-photon gates. In agreement with our modeling, we observe that the environmental noise does not limit the amplitude of the spin-induced rotation, yet slightly degrades the polarisation purity of the output states. We find that the polarisation state of the reflected photons can be manipulated in most of the Poincaré sphere, through controlled spin-induced rotations, thanks to moderate cavity birefringence and limited noise. This control allows the operation of spin-photon interfaces in various configurations, including at zero or low magnetic fields, which ensures compatibility with key protocols for photonic cluster state generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源