论文标题
在无源领域适应中调和质心疗法冲突
Reconciling a Centroid-Hypothesis Conflict in Source-Free Domain Adaptation
论文作者
论文摘要
无源域的适应性(SFDA)旨在将知识从源域中学习的知识转移到未标记的目标域,在这种目标域中,在适应过程中源数据是不可用的。现有的SFDA方法专注于自我训练,通常包括建立良好的熵最小化技术。 SFDA的主要挑战之一是减少由域未对准引起的错误的积累。最近的一种策略成功地通过基于群集在表示空间中的群集产生的阶级原型(Centroids)来伪标记目标样本来减少误差积累。但是,该策略还创造了伪标签和最低熵的跨凝结的案例,其目标是冲突的。我们将这种冲突称为中心障碍冲突。我们建议通过将熵最小化目标与伪标签的横熵熵保持一致来调和这一冲突。我们证明了在三个域适应数据集上对齐两个损失目标的有效性。此外,我们还使用最新体系结构提供了最先进的结果,还显示了我们在这些体系结构中方法的一致性。
Source-free domain adaptation (SFDA) aims to transfer knowledge learned from a source domain to an unlabeled target domain, where the source data is unavailable during adaptation. Existing approaches for SFDA focus on self-training usually including well-established entropy minimization techniques. One of the main challenges in SFDA is to reduce accumulation of errors caused by domain misalignment. A recent strategy successfully managed to reduce error accumulation by pseudo-labeling the target samples based on class-wise prototypes (centroids) generated by their clustering in the representation space. However, this strategy also creates cases for which the cross-entropy of a pseudo-label and the minimum entropy have a conflict in their objectives. We call this conflict the centroid-hypothesis conflict. We propose to reconcile this conflict by aligning the entropy minimization objective with that of the pseudo labels' cross entropy. We demonstrate the effectiveness of aligning the two loss objectives on three domain adaptation datasets. In addition, we provide state-of-the-art results using up-to-date architectures also showing the consistency of our method across these architectures.