论文标题
随机Koper模型的慢歧管,具有稳定的Lévy噪声
Slow manifolds for stochastic Koper models with stable Lévy noises
论文作者
论文摘要
Koper模型是一个矢量场,其中微分方程描述了在扩散过程中出现的电化学振荡。这项工作重点是理解稳定的Lévy噪声扰动的随机Koper模型的缓慢动力学。我们建立了具有稳定的Lévy噪声的随机Koper模型的慢速歧管,并验证指数跟踪属性。我们还提供了一个实践示例,可以通过数值模拟来证明分析结果。
The Koper model is a vector field in which the differential equations describe the electrochemical oscillations appearing in diffusion processes. This work focuses on the understanding of the slow dynamics of stochastic Koper model perturbed by stable Lévy noise. We establish the slow manifold for stochastic Koper model with stable Lévy noise and verify exponential tracking property. We also present a practical example to demonstrate the analytical results with numerical simulations.