论文标题
安德森本地化和弯曲时空的摆动移动边缘
Anderson Localization and Swing Mobility Edge in Curved Spacetime
论文作者
论文摘要
我们在弯曲的时空中构建了一个准碘晶格模型,以探索有关凝结物质和弯曲时空物理学的交叉。我们研究了相关的安德森本地化,并发现该模型具有局部扩展相位分离的明确边界,这导致了挥杆移动性边缘,即局部,摆动和亚延伸阶段的共存。在此处首次报道的秋千移动性边缘具有相关特征状态,即扩展状态和局部状态之间的特征态摆动,用于quasiperiodic电位的不同相位参数。此外,开发了一种新型的自搭配分割方法来计算相位分离的临界点的分析表达,并且通过计算多性分析中的分形维度和缩放指数来获得丰富的相图。
We construct a quasiperiodic lattice model in curved spacetime to explore the crossover concerning both condensed matter and curved spacetime physics. We study the related Anderson localization and find that the model has a clear boundary of localized-extended phase separation, which leads to a swing mobility edge, i.e., the coexistence of localized, swing and sub-extended phases. The swing mobility edge, first reported here, features the phase-dependent eigenstate, that is, the eigenstate swing between the extended and localized state for differnt phase parameter of the quasiperiodic potential. Furthermore, A novel self-consistent segmentation method is developed to calculate the analytical expression of the critical point of phase separation, and the rich phase diagram is obtained by calculating the fractal dimension and scaling index in multifractal analysis.