论文标题
静态多级反向Stackelberg游戏:最佳策略的存在和计算
Static multilevel reverse Stackelberg games: existence and computations of best strategies
论文作者
论文摘要
考虑了多级反向Stackelberg游戏。在这个游戏中,领导者通过宣布策略来控制结果,这是追随者对自己的决策空间的决策变量的函数。与领导者的策略相对应,在下一个级别的球员介绍了他/她的策略,这是其余参与者的决策变量的函数。重复此过程,直到层次结构中的底层播放器的转弯为止,后者通过确定其最佳决策变量做出反应。该游戏的结构可以在分散的多层次决策中采用,例如资源分配,能源市场定价,层次控制问题。在本文中,针对此类问题开发了仿生领导者反向Stackelberg策略的存在和建设。作为对现有文献的扩展,我们考虑了非convex kublevex的追随者目标功能集。此外,还提出了一种为领导者构建多个反向Stackelberg策略的方法。
The multilevel reverse Stackelberg game is considered. In this game, the leader controls the outcome by announcing a strategy as a function of decision variables of the followers to his/her own decision space. Corresponding to the leader's strategy, the player in the next level presents his/her strategy as a function of decision variables of the remaining players. This procedure is repeated until it is the turn of the bottom level player in the hierarchy, who reacts by determining his/her optimal decision variables. The structure of this game can be adopted in decentralized multilevel decision making like resource allocation, energy market pricing, problems with hierarchical controls. In this paper conditions for existence and construction of affine leader reverse Stackelberg strategies are developed for such problems. As an extension to the existing literature, we considered nonconvex sublevel sets of objective functions of followers. Moreover, a method to construct multiple reverse Stackelberg strategies for the leader is also presented.