论文标题
装饰新来者:视觉域提示进行连续测试时间适应
Decorate the Newcomers: Visual Domain Prompt for Continual Test Time Adaptation
论文作者
论文摘要
连续的测试时间适应(CTTA)旨在使源模型不访问源数据,以不断更改未标记的目标域。现有方法主要集中于以自我训练方式进行基于模型的适应,例如预测新域数据集的伪标签。由于伪标签嘈杂且不可靠,因此在处理动态数据分布时,这些方法会遭受灾难性的遗忘和错误积累。在本文中,由NLP中的及时学习的动机,我们建议在冻结源模型参数的同时学习图像级的视觉域提示。在测试过程中,可以通过使用学习的视觉提示重新计算输入数据来调整不断变化的目标数据集。具体而言,我们设计了两种类型的提示,即特定于域特异性提示和域 - 不合时宜的提示,以提取当前的域知识并在持续适应中维护域共享的知识。此外,我们设计了一种基于体内稳态的及时适应策略,以抑制域内不变的域敏感参数提示,以更有效地学习域共享知识。从模型依赖性范式到无模型的过渡使我们能够绕过灾难性的遗忘和误差积累问题。实验表明,我们所提出的方法在四个广泛使用的基准测试基准(包括CIFAR-10C,CIFAR-100C,Imagenet-C和VLCS数据集)上实现了最先进的方法。
Continual Test-Time Adaptation (CTTA) aims to adapt the source model to continually changing unlabeled target domains without access to the source data. Existing methods mainly focus on model-based adaptation in a self-training manner, such as predicting pseudo labels for new domain datasets. Since pseudo labels are noisy and unreliable, these methods suffer from catastrophic forgetting and error accumulation when dealing with dynamic data distributions. Motivated by the prompt learning in NLP, in this paper, we propose to learn an image-level visual domain prompt for target domains while having the source model parameters frozen. During testing, the changing target datasets can be adapted to the source model by reformulating the input data with the learned visual prompts. Specifically, we devise two types of prompts, i.e., domains-specific prompts and domains-agnostic prompts, to extract current domain knowledge and maintain the domain-shared knowledge in the continual adaptation. Furthermore, we design a homeostasis-based prompt adaptation strategy to suppress domain-sensitive parameters in domain-invariant prompts to learn domain-shared knowledge more effectively. This transition from the model-dependent paradigm to the model-free one enables us to bypass the catastrophic forgetting and error accumulation problems. Experiments show that our proposed method achieves significant performance gains over state-of-the-art methods on four widely-used benchmarks, including CIFAR-10C, CIFAR-100C, ImageNet-C, and VLCS datasets.