论文标题

原始jupiter在巨大的行星磁盘上重新启动的重元素积聚,重新审视

Heavy-element Accretion by Proto-Jupiter in a Massive Planetesimal Disk, Revisited

论文作者

Shibata, Sho, Helled, Ravit, Kobayashi, Hiroshi

论文摘要

行星积聚是巨型行星重元素富集的关键来源。有人提出,木星的富集信封是行星在其生长过程中的结果,假设其在巨大的行星磁盘中形成。在这项研究中,我们在这种情况下模拟了木星的形成。我们假设原位形成并执行N体模拟以推断固体积聚率。我们发现,在快速气体积聚阶段,原始jupiter可以捕获地球上的巨大地球量。但是,如果在木星的核心附近形成了几个胚胎,这是一个预期的结果,在巨大的行星椎间盘的情况下,散射从胚胎散射会增加行星的偏心率和倾向,从而大大降低增值效率。我们还将结果与已发表的半分析模型进行了比较,并表明这些模型无法重现N体模拟,尤其是当行星磁盘具有较大的偏心和倾斜度时。我们表明,当仔细建模行星的动态演化时,捕获的行星的总质量$ m_ \ mathrm {cap,tot} $是$ 2 m_ \ oplus \ oplus \ lisesim m_ \ mathrm {cap,tot},tot} \ silysim 18 m_ \ oplus $。木星包络的金属性可以通过我们巨大的磁盘模型中的行星积聚来解释,尽管高偏心和行星的倾向提高了积聚效率低。我们的研究表明,行星增长过程中行星积聚的详细建模及其对气态行星重元素质量的影响的重要性。

Planetesimal accretion is a key source for heavy-element enrichment in giant planets. It has been suggested that Jupiter's enriched envelope is a result of planetesimal accretion during its growth assuming it formed in a massive planetesimal disk. In this study, we simulate Jupiter's formation in this scenario. We assume in-situ formation and perform N-body simulations to infer the solid accretion rate. We find that tens-Earth masses of planetesimals can be captured by proto-Jupiter during the rapid gas accretion phase. However, if several embryos are formed near Jupiter's core, which is an expected outcome in the case of a massive planetesimal disk, scattering from the embryos increases the eccentricity and inclination of planetesimals and therefore significantly reduces the accretion efficiency. We also compare our results with published semi-analytical models and show that these models cannot reproduce the N-body simulations especially when the planetesimal disk has a large eccentricity and inclination. We show that when the dynamical evolution of planetesimals is carefully modelled, the total mass of captured planetesimals $M_\mathrm{cap,tot}$ is $2 M_\oplus \lesssim M_\mathrm{cap,tot}\lesssim 18 M_\oplus$. The metallicity of Jupiter's envelope can be explained by the planetesimal accretion in our massive disk model despite the low accretion efficiency coming from the high eccentricity and inclination of planetesimals. Our study demonstrates the importance of detailed modelling of planetesimal accretion during the planetary growth and its implications to the heavy-element mass in gaseous planets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源