论文标题

Editablenerf:通过关键点编辑拓扑上不同的神经辐射场

EditableNeRF: Editing Topologically Varying Neural Radiance Fields by Key Points

论文作者

Zheng, Chengwei, Lin, Wenbin, Xu, Feng

论文摘要

神经辐射场(NERF)实现了高度逼真的小说综合综合,但是编辑以基于NERF的方法建模的场景是一个挑战性的问题,尤其是对于动态场景。我们提出了可编辑的神经辐射场,使最终用户能够轻松编辑动态场景,甚至支持拓扑变化。使用单个相机的图像序列输入,我们的网络经过充分的自动训练,并使用我们挑选的表面关键点在拓扑上进行了拓扑变化的动力学。然后,最终用户可以通过轻松将关键点拖到所需的新位置来编辑场景。为了实现这一目标,我们提出了一种场景分析方法,通过考虑场景中的动力学来检测和初始化关键点,以及一个加权关键点策略,通过关节关键点和权重优化对拓扑变化的动态进行建模。我们的方法支持直观的多维(最多3D)编辑,并且可以生成在输入序列中看不见的新型场景。实验表明,我们的方法在各种动态场景上实现了高质量的编辑,并且优于最先进的方法。我们的代码和捕获的数据可在https://chengwei-zheng.github.io/editablenerf/上获得。

Neural radiance fields (NeRF) achieve highly photo-realistic novel-view synthesis, but it's a challenging problem to edit the scenes modeled by NeRF-based methods, especially for dynamic scenes. We propose editable neural radiance fields that enable end-users to easily edit dynamic scenes and even support topological changes. Input with an image sequence from a single camera, our network is trained fully automatically and models topologically varying dynamics using our picked-out surface key points. Then end-users can edit the scene by easily dragging the key points to desired new positions. To achieve this, we propose a scene analysis method to detect and initialize key points by considering the dynamics in the scene, and a weighted key points strategy to model topologically varying dynamics by joint key points and weights optimization. Our method supports intuitive multi-dimensional (up to 3D) editing and can generate novel scenes that are unseen in the input sequence. Experiments demonstrate that our method achieves high-quality editing on various dynamic scenes and outperforms the state-of-the-art. Our code and captured data are available at https://chengwei-zheng.github.io/EditableNeRF/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源