论文标题
在迭代的功能系统和Lipschitz地图的代数属性上
On iterated function systems and algebraic properties of Lipschitz maps in partial metric spaces
论文作者
论文摘要
本文讨论了部分迭代功能系统($ ifs_p $'s)的某些代数,分析和拓扑结果。此外,本文证明了部分迭代功能系统的拼贴定理。此外,它提供了一种解决部分迭代功能系统吸引子中点的方法,并获得与吸引子中点地址有关的结果。在适当的条件下,证明了与固定合同因子的部分度量空间的完整性。同样,它证明了地图的连续性,将整个部分度量空间中的每个收缩与其相应的独特固定点相关联。此外,它定义了$ ifs_p $ semigroup,并表明在功能组成下,Lipschitz转换的集合和收缩集是半群。
This paper discusses, certain algebraic, analytic, and topological results on partial iterated function systems($IFS_p$'s). Also, the article proves the Collage theorem for partial iterated function systems. Further, it provides a method to address the points in the attractor of a partial iterated function system and obtain results related to the address of points in the attractor. The completeness of the partial metric space of contractions with a fixed contractivity factor is proved, under suitable conditions. Also, it demonstrates the continuity of the map that associates each contraction in a complete partial metric space to its corresponding unique fixed point. Further, it defines the $IFS_p$ semigroup and shows that under function composition, the set of Lipschitz transformations and the set of contractions are semigroups.