论文标题
阳米尔斯理论的规格不变双副本:四重奏理论
Gauge invariant double copy of Yang-Mills theory: the quartic theory
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We give an explicit gauge invariant, off-shell and local double copy construction of gravity from Yang-Mills theory to quartic order. To this end we use the framework of homotopy algebras, and we identify a rich new algebraic structure associated to color-stripped Yang-Mills theory. This algebra, which is a generalization of a Batalin-Vilkovisky algebra, is the underlying structure necessary for double copy. We give a self-contained introduction into these algebras by illustrating them for Chern-Simons theory in three dimensions. We then construct N = 0 supergravity in the form of double field theory in terms of the algebraic Yang-Mills building blocks to quartic order in interactions. As applications of the same universal formula, we re-derive the 4-graviton scattering amplitude and compute a chiral form of the Courant algebroid gauge structure of double field theory.