论文标题

stlgru:时空轻量级图GRU用于交通流预测

STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow Prediction

论文作者

Bhaumik, Kishor Kumar, Niloy, Fahim Faisal, Mahmud, Saif, Woo, Simon

论文摘要

可靠的交通流量预测需要对流量数据进行有效的建模。实际上,动态的交通网络中会出现不同的相关性和影响,从而使建模成为复杂的任务。现有文献提出了许多不同的方法来捕获交通网络的基础时空关系。但是,鉴于交通数据的异质性,始终捕获空间和时间依赖性的始终如一,提出了重大挑战。同样,随着提出越来越复杂的方法,模型越来越多地变得沉重,因此不适合低功率设备。为此,我们提出了时空的轻量级图GRU,即Stlgru,这是一种用于准确预测流量流量的新型流量预测模型。具体而言,我们提出的STLGRU可以使用记忆增强的注意力和门控机制以连续同步的方式有效地捕获交通网络的动态局部和全局时空关系。此外,我们表明我们的内存模块和门控单元可以成功地学习以减少的存储器使用和更少的参数来成功学习空间 - 周期依赖性,而不是采用单独的时间和空间组件。三个现实世界公共交通数据集的广泛实验结果表明,我们的方法不仅可以实现最先进的性能,还可以表现出竞争性的计算效率。我们的代码可从https://github.com/kishor-bhaumik/stlgru获得

Reliable forecasting of traffic flow requires efficient modeling of traffic data. Indeed, different correlations and influences arise in a dynamic traffic network, making modeling a complicated task. Existing literature has proposed many different methods to capture traffic networks' complex underlying spatial-temporal relations. However, given the heterogeneity of traffic data, consistently capturing both spatial and temporal dependencies presents a significant challenge. Also, as more and more sophisticated methods are being proposed, models are increasingly becoming memory-heavy and, thus, unsuitable for low-powered devices. To this end, we propose Spatio-Temporal Lightweight Graph GRU, namely STLGRU, a novel traffic forecasting model for predicting traffic flow accurately. Specifically, our proposed STLGRU can effectively capture dynamic local and global spatial-temporal relations of traffic networks using memory-augmented attention and gating mechanisms in a continuously synchronized manner. Moreover, instead of employing separate temporal and spatial components, we show that our memory module and gated unit can successfully learn the spatial-temporal dependencies with reduced memory usage and fewer parameters. Extensive experimental results on three real-world public traffic datasets demonstrate that our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency. Our code is available at https://github.com/Kishor-Bhaumik/STLGRU

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源