论文标题

3D室内点云的合成到现实域通用语义分段

Synthetic-to-Real Domain Generalized Semantic Segmentation for 3D Indoor Point Clouds

论文作者

Zhao, Yuyang, Zhao, Na, Lee, Gim Hee

论文摘要

在大规模注释数据的监督下,3D室内场景中的语义细分已经取得了出色的性能。但是,以前的工作依赖于以下假设:培训和测试数据具有相同的分布,在分发场景中评估时,这种分布可能会遭受性能降解。为了减轻注释成本和绩效降解,本文将合成到现实的域概括设置引入了此任务。具体而言,合成点和现实点云数据之间的域间隙主要在于不同的布局和点模式。为了解决这些问题,我们首先提出了一种聚类实例组合(CINMIX)增强技术,以使源数据的布局多样化。此外,我们增加了源数据的点模式,并引入了非参数多型型,以改善通过增强点模式扩大的类内差异。多概要型可以在训练和推理阶段对全局分类器进行建模并纠正全局分类器。对合成基准测试的实验表明,Cinmix和多型型都可以缩小分布差距,从而提高现实世界数据集的概括能力。

Semantic segmentation in 3D indoor scenes has achieved remarkable performance under the supervision of large-scale annotated data. However, previous works rely on the assumption that the training and testing data are of the same distribution, which may suffer from performance degradation when evaluated on the out-of-distribution scenes. To alleviate the annotation cost and the performance degradation, this paper introduces the synthetic-to-real domain generalization setting to this task. Specifically, the domain gap between synthetic and real-world point cloud data mainly lies in the different layouts and point patterns. To address these problems, we first propose a clustering instance mix (CINMix) augmentation technique to diversify the layouts of the source data. In addition, we augment the point patterns of the source data and introduce non-parametric multi-prototypes to ameliorate the intra-class variance enlarged by the augmented point patterns. The multi-prototypes can model the intra-class variance and rectify the global classifier in both training and inference stages. Experiments on the synthetic-to-real benchmark demonstrate that both CINMix and multi-prototypes can narrow the distribution gap and thus improve the generalization ability on real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源