论文标题
使用机器学习的基于网格的传感器地板平台用于机器人本地化
A Grid-based Sensor Floor Platform for Robot Localization using Machine Learning
论文作者
论文摘要
无线传感器网络(WSN)应用程序重塑了仓库监视系统的趋势,使他们可以实时跟踪和定位大量的物流实体。为了支持任务,经典的射频(RF)基于基于噪声仓库环境中的多路褪色和信号损失而面临的基于基于三角测量和三材料的定位方法(例如三角剖分和三个及其三角及其三角及其三角征)。在本文中,我们使用基于网格的WSN平台称为传感器地板,调查机器学习方法,该平台可以克服问题。传感器地板由带有双波段RF和惯性测量单元(IMU)传感器的物流研究大厅的地板上安装的345个节点组成。我们的目标是本地化所有物流实体,因为这项研究我们使用移动机器人。我们将接收的信号强度指示器(RSSI)和IMU值的分布式感应测量记录为Vicon系统的数据集和位置跟踪作为地面真相。使用随机森林和卷积神经网络(CNN)对异步收集的数据进行预处理和训练。具有正则化的CNN模型的表现优于随机森林,其定位准确性用aproximate 15 cm。此外,根据仓库中的情况,可以灵活地对CNN体系结构进行配置。在https://github.com/flw-tudo/sensorfloor下,传感器地板的硬件,软件和CNN体系结构是开源的。
Wireless Sensor Network (WSN) applications reshape the trend of warehouse monitoring systems allowing them to track and locate massive numbers of logistic entities in real-time. To support the tasks, classic Radio Frequency (RF)-based localization approaches (e.g. triangulation and trilateration) confront challenges due to multi-path fading and signal loss in noisy warehouse environment. In this paper, we investigate machine learning methods using a new grid-based WSN platform called Sensor Floor that can overcome the issues. Sensor Floor consists of 345 nodes installed across the floor of our logistic research hall with dual-band RF and Inertial Measurement Unit (IMU) sensors. Our goal is to localize all logistic entities, for this study we use a mobile robot. We record distributed sensing measurements of Received Signal Strength Indicator (RSSI) and IMU values as the dataset and position tracking from Vicon system as the ground truth. The asynchronous collected data is pre-processed and trained using Random Forest and Convolutional Neural Network (CNN). The CNN model with regularization outperforms the Random Forest in terms of localization accuracy with aproximate 15 cm. Moreover, the CNN architecture can be configured flexibly depending on the scenario in the warehouse. The hardware, software and the CNN architecture of the Sensor Floor are open-source under https://github.com/FLW-TUDO/sensorfloor.