论文标题

迷你串和棉花双复制

Mini-twistors and the Cotton Double Copy

论文作者

González, Mariana Carrillo, Emond, William T., Moynihan, Nathan, Rumbutis, Justinas, White, Chris D.

论文摘要

双拷贝与仪表,重力和相关理论的数量有关。与确切的经典解决方案相关的一个众所周知的程序是四个时空维度中的Weyl双拷贝,最近发现了三维的类似物(棉花双拷贝),用于拓扑庞大的规格理论和重力。在本文中,我们使用Twistor方法来提供位置空间双拷贝的推导,从而在其中将适当的数据组合在所谓的MinitWistor空间中而引起。我们的方法依赖于将时空领域与MinitWistor空间中的共同体学类别联系起来的Penrose变换的大规模概括。我们从曲折文献中确定了相关的转换,但也表明它自然是由于考虑动量空间中的散射幅度而产生的。我们表明,位置空间中的棉花双复制仅适用于N型解决方案,但是对于非类型N解决方案来说,简单的Twistor空间可以双复制,我们使用Anyons来说明我们的论点。

The double copy relates quantities in gauge, gravity and related theories. A well-known procedure for relating exact classical solutions is the Weyl double copy in four spacetime dimensions, and a three-dimensional analogue of this -- the Cotton double copy -- has recently been found for topologically massive gauge theory and gravity. In this paper, we use twistor methods to provide a derivation of the position-space Cotton double copy, where this is seen to arise from combining appropriate data in so-called minitwistor space. Our methods rely on a massive generalisation of the Penrose transform linking spacetime fields with cohomology classes in minitwistor space. We identify the relevant transform from the twistor literature, but also show that it naturally arises from considering scattering amplitudes in momentum space. We show that the Cotton double copy in position space is only valid for type N solutions, but that a simple twistor space double copy is possible for non-type N solutions, where we use anyons to illustrate our arguments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源