论文标题

MOPRD:多学科开放同行评审数据集

MOPRD: A multidisciplinary open peer review dataset

论文作者

Lin, Jialiang, Song, Jiaxin, Zhou, Zhangping, Chen, Yidong, Shi, Xiaodong

论文摘要

公开同行评审是学术出版物的增长趋势。公众访问同行评审数据可以使学术和出版社区受益。它也可以很好地支持评论评论的研究,并进一步实现自动学术论文评论。但是,大多数现有的同行评审数据集都不提供涵盖整个同行审查过程的数据。除此之外,他们的数据还不够多样化,因为数据主要是从计算机科学领域收集的。需要解决当前可用的同行评审数据集的这两个缺点,以解锁更多相关研究的机会。作为响应,我们构建了Moprd,这是一个多学科的开放式同行评审数据集。该数据集由纸质元数据,多个版本手稿,评论评论,元评论,作者的反驳信件和编辑决策组成。此外,我们提出了一种基于MOPRD的模块化指导评论评论生成方法。实验表明,我们的方法提供了更好的性能,如自动指标和人类评估所示。我们还探索了MOPRD的其他潜在应用,包括元评论生成,编辑决策预测,作者反驳生成和科学计量分析。 MOPRD是在与同行评审有关的研究和其他应用中进一步研究的强有力认可。

Open peer review is a growing trend in academic publications. Public access to peer review data can benefit both the academic and publishing communities. It also serves as a great support to studies on review comment generation and further to the realization of automated scholarly paper review. However, most of the existing peer review datasets do not provide data that cover the whole peer review process. Apart from this, their data are not diversified enough as the data are mainly collected from the field of computer science. These two drawbacks of the currently available peer review datasets need to be addressed to unlock more opportunities for related studies. In response, we construct MOPRD, a multidisciplinary open peer review dataset. This dataset consists of paper metadata, multiple version manuscripts, review comments, meta-reviews, author's rebuttal letters, and editorial decisions. Moreover, we propose a modular guided review comment generation method based on MOPRD. Experiments show that our method delivers better performance as indicated by both automatic metrics and human evaluation. We also explore other potential applications of MOPRD, including meta-review generation, editorial decision prediction, author rebuttal generation, and scientometric analysis. MOPRD is a strong endorsement for further studies in peer review-related research and other applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源