论文标题
IR物理学对Regge行为的限制
Constraints on Regge behaviour from IR physics
论文作者
论文摘要
我们考虑适用于在任意维度中重力的有效现场理论(EFT)的阳性约束。通过考虑不确定的初始和最终状态的散射,我们强调了一个重力散射幅度的存在,其全面交叉对称是显现的,并利用了最近开发的交叉对称性分散关系来得出紧凑的非线性界限。我们表明,这些分散关系中内置的无限制导致重力的有限能量总规则,该规则可能扩展到一个连续矩总规则的单参数家族。这些总和规则强制执行UV-IR关系,该关系对Regge轨迹和残基都施加了约束。我们还强调了一种情况,即根据子级尺度幅度唯一确定了regge轨迹。通常,可以在给定的EFT中计算出的IR敏感部分,该部分主要取决于自然界中最轻的领域,而IR独立部分则受到单位性和分析性的普遍阳性约束。
We consider positivity constraints applicable to the Effective Field Theory (EFT) of gravity in arbitrary dimensions. By considering scattering of indefinite initial and final states, we highlight the existence of a gravitational scattering amplitude for which full crossing symmetry is manifest and utilize the recently developed crossing symmetric dispersion relations to derive compact non-linear bounds. We show that the null constraints built into these dispersion relations lead to a finite energy sum rule for gravity which may be extended to a one-parameter family of continuous moment sum rules. These sum rules enforce a UV-IR relation which imposes constraints on both the Regge trajectory and residue. We also highlight a situation where the Regge trajectory is uniquely determined in terms of the sub-Regge scale amplitude. Generically the Regge behaviour may be split into an IR sensitive part calculable within a given EFT which mainly depends on the lightest fields in Nature, and an IR independent part which are subject to universal positivity constraints following from unitarity and analyticity.