论文标题
增强事项:半监督语义细分的一种简单的效率方法
Augmentation Matters: A Simple-yet-Effective Approach to Semi-supervised Semantic Segmentation
论文作者
论文摘要
关于半监督语义分割(SSS)的最新研究已经取得了迅速的进展。尽管表现出色,但当前的最新方法倾向于以引入更多的网络组件和其他培训程序为代价来越来越复杂的设计。不同的是,在这项工作中,我们遵循一个标准的教师框架并提出Augseg,这是一种简单清洁的方法,主要集中于数据扰动以提高SSS性能。我们认为,应调整各种数据增强,以更好地适应半监督的方案,而不是直接从监督学习中应用这些技术。具体而言,我们采用了简化的基于强度的增强,从而从连续空间中选择了随机数量的数据转换,并均匀地采样失真强度。基于该模型对不同未标记样本的估计置信度,我们还随机注入标记的信息以以自适应方式增强未标记的样品。如果没有铃铛和口哨声,我们的简单Augseg很容易在不同分区协议下在SSS基准上实现新的最新性能。
Recent studies on semi-supervised semantic segmentation (SSS) have seen fast progress. Despite their promising performance, current state-of-the-art methods tend to increasingly complex designs at the cost of introducing more network components and additional training procedures. Differently, in this work, we follow a standard teacher-student framework and propose AugSeg, a simple and clean approach that focuses mainly on data perturbations to boost the SSS performance. We argue that various data augmentations should be adjusted to better adapt to the semi-supervised scenarios instead of directly applying these techniques from supervised learning. Specifically, we adopt a simplified intensity-based augmentation that selects a random number of data transformations with uniformly sampling distortion strengths from a continuous space. Based on the estimated confidence of the model on different unlabeled samples, we also randomly inject labelled information to augment the unlabeled samples in an adaptive manner. Without bells and whistles, our simple AugSeg can readily achieve new state-of-the-art performance on SSS benchmarks under different partition protocols.