论文标题
神经尖峰解码的拓扑深度学习框架
A Topological Deep Learning Framework for Neural Spike Decoding
论文作者
论文摘要
大脑的空间取向系统使用不同的神经元集合来帮助基于环境的导航。大脑编码空间信息的两种方式是通过头方向细胞和网格细胞。大脑使用头部方向细胞来确定取向,而网格细胞由覆盖层的层层神经元组成,以提供基于环境的导航。这些神经元在合奏中发射,其中几个神经元立即发射以激活一个头部方向或网格。我们希望捕获这种射击结构并使用它来解码头部方向网格单元数据。理解,代表和解码这些神经结构需要涵盖高阶连接性的模型,而不是传统基于图的模型提供的一维连接性。为此,在这项工作中,我们为神经尖峰火车解码开发了一个拓扑深度学习框架。我们的框架将无监督的简单复杂发现与深度学习的力量相结合,我们在此开发的新体系结构称为简单卷积复发性神经网络。简单的复合物,不仅使用顶点和边缘的拓扑空间,而且使用更高维的对象,自然而然地概括图并捕获更多的比值关系。此外,这种方法不需要以外的峰值数量的神经活动的先验知识,这消除了相似性测量的需求。简单卷积神经网络的有效性和多功能性通过头方向和网格细胞数据集证明了头方向和轨迹预测。
The brain's spatial orientation system uses different neuron ensembles to aid in environment-based navigation. Two of the ways brains encode spatial information is through head direction cells and grid cells. Brains use head direction cells to determine orientation whereas grid cells consist of layers of decked neurons that overlay to provide environment-based navigation. These neurons fire in ensembles where several neurons fire at once to activate a single head direction or grid. We want to capture this firing structure and use it to decode head direction grid cell data. Understanding, representing, and decoding these neural structures requires models that encompass higher order connectivity, more than the 1-dimensional connectivity that traditional graph-based models provide. To that end, in this work, we develop a topological deep learning framework for neural spike train decoding. Our framework combines unsupervised simplicial complex discovery with the power of deep learning via a new architecture we develop herein called a simplicial convolutional recurrent neural network. Simplicial complexes, topological spaces that use not only vertices and edges but also higher-dimensional objects, naturally generalize graphs and capture more than just pairwise relationships. Additionally, this approach does not require prior knowledge of the neural activity beyond spike counts, which removes the need for similarity measurements. The effectiveness and versatility of the simplicial convolutional neural network is demonstrated on head direction and trajectory prediction via head direction and grid cell datasets.